Infusion pressure and pain during microneedle injection into skin of human subjects.

نویسندگان

  • Jyoti Gupta
  • Sohyun S Park
  • Brian Bondy
  • Eric I Felner
  • Mark R Prausnitz
چکیده

Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures caused more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microneedles for drug and vaccine delivery.

Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encaps...

متن کامل

Mechanism of fluid infusion during microneedle insertion and retraction.

Previous work has shown that infusion flow rates can be increased by an order of magnitude by partially retracting microneedles after insertion into the skin. This study sought to determine the mechanism by which retraction increases fluid infusion by piercing human cadaver skin with single microneedles, fixing the skin after retracting microneedles to different distances, and examining skin mi...

متن کامل

Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles.

BACKGROUND Microneedles have previously been used to deliver insulin to animal models, but not in human subjects. This study tested the hypothesis that hollow microneedles can deliver insulin to modulate blood glucose levels in subjects with type 1 diabetes in a minimally invasive manner. METHODS This study was carried out in two adults with type 1 diabetes and evaluated bolus delivery of lis...

متن کامل

Gene Silencing in Skin After Deposition of Self-Delivery siRNA With a Motorized Microneedle Array Device

Despite the development of potent siRNAs that effectively target genes responsible for skin disorders, translation to the clinic has been hampered by inefficient delivery through the stratum corneum barrier and into the live cells of the epidermis. Although hypodermic needles can be used to transport siRNA through the stratum corneum, this approach is limited by pain caused by the injection and...

متن کامل

Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery

Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 32 28  شماره 

صفحات  -

تاریخ انتشار 2011